
Computer Science 120
Introduction to Programming
Siena College
Spring 2011

Topic Notes: Introduction and Overview

Welcome to Introduction to Programming!

Why take this course?

• Computer programming is the act of creating acomputer program, which is a set of instruc-
tions that can be understood by a computer.

• Much of our time this semester will be spent developing your programming skills.

So why should you learn about computing and computer science, and in particular, programming?

• Programming skills may be applied in other areas.

• The experience of programming helps develop problem solving skills, in particular, the abil-
ity to deal with complexity.

• Computer technology is pervasive and computational thinking is pervading society. For ex-
ample, biologists are beginning to model cells as distributed computing devices that commu-
nicate over membrane boundaries. Nearly every field of science now has a “computational”
branch of that science which is becoming as important as the experimental and theoretical
branches. Moreover, the impact of the computer on society ishuge and will continue to
accelerate over the years.

• Most programming is done by non-computer scientists. Customizing of tools is possible by
those who understand programming. This can range from programming complicated queries
on databases to running complex simulations with spreadsheets. The techniques you learn
in any of these contexts can usually be applied to others.

• It’s a fascinating challenge to teach the computer how to solve hard problems.

Consider how radically computing technology has changed theway we do things in just a little
more than half a century.

• Communication: The Internet and world-wide web, fast and cheap communication world-
wide.

• Productivity: word processing, spreadsheets,etc..



CS 120 Introduction to Programming Spring 2011

• Creative arts: digital cameras, camcorders, digital image manipulation.

• Entertainment: CD, DVD, BluRay, MP3 technologies.

• Infrastructure: there are computer chips in your watch, toaster, car, phone, game system,
iPod,etc..

Computing is clearly is an exciting area!

Amazingly, computers today are fundamentally the same as computers of the 1950’s. In the 1950’s
computers were primarily used as giant calculators, solving military and scientific problems. It was
originally expected that there would be no need for more thatjust a few computers – especially
given their cost and since computer programmers were expected to have a Ph.D. in mathematics
or the sciences. (Computer time was expensive - people were relatively cheap.)

If you look closely enough at the internal circuitry, you will discover that there are basically only
two things a computer can do:

1. perform numeric operations (addition, multiplication,comparison...)

2. follow a series of instructions that describes which operations to perform and when to per-
form them

The difference between today’s computers and those built inthe 50’s is that today’s are:

• much faster,

• much cheaper,

• much smaller,

• filled with much more memory, and

• they can communicate with other computers.

While the scale of these changes has been dramatic, the changes themselves are not fundamental.

Rather, what has happened is that the size, cost, and speed of computers has changed in such a way
that we can now conceive of uses for computers that would havebeen ridiculously expensive in
the early years or even just a few years ago. At least as important, we now know how to program
computers in ways that are much simpler than those used in theearly days.

It seems likely that part of what early pioneers failed to appreciate about computers was the power
of numbers. The very name that its inventors gave the computer suggests that they thought the
primary applications for computers would be processing numbers as numbers for the purpose of
science and engineering. They did not recognize or appreciate the fact that numbers can be used
to encode just about any information one might want to process.

2



CS 120 Introduction to Programming Spring 2011

• There are many examples where numbers are used to represent information but the values of
the numbers used have little significance.

– ZIP/postal codes,

– social security or other identifying numbers,

– license numbers, ...

• By associating a numeric value with each letter of the alphabet (a=1, b=2, etc.) we can
construct a numerical encoding of any textual information.

• When a computer manipulates numbers of this sort, it is reallybeing used as a symbol or
information processor rather than a “computer”.

It is the fact that just about any information can be encoded using numbers that gives the computer
the ability to be a universal information processor. As a result, the encoding of information forms
an important part of all of computer science. We refer to it as“data structures”. We will consider
some basic data structure here, and those who go on in CS will take CS 211, which focuses on data
structures.

Recognizing the power of numbers as symbols isn’t quite enough to explain the amazing impact
computers have had.

• Simple, hand-held calculators can process numbers too, butthey have not had the impact of
computers.

• The computer’s other, fundamental capability — the abilityto follow pre-supplied instruc-
tions or programs — provides the rest of the explanation.

– The ability to change programs makes computers flexible. They can be adapted to new
tasks without being rebuilt.

– The abilty to follow programs makes it possible to exploit the speed of a computer. If
the instructions could not be pre-supplied, the computer would spend most of its time
waiting for a slow human to press the next control button.

Algorithms

Our main focus in this course will be learning how to prepare the instructions needed to ensure that
a computer can perform a particular task.

The instruction presented to a computer must be significantly different from the sorts of instructions
we might prepare for another human being. Computers have no common sense or intuition. They
can only perform a task if the instructions provided are accurate and totally unambiguous. It must
be possible to follow the instructions without in any sense understanding their ultimate purpose

Such a set of instructions is called analgorithm.

3



CS 120 Introduction to Programming Spring 2011

• The instructions in an algorithm must specify what to do rather than what can or might be
done. Thus, the “instructions” for a board game or a card gamewould not be considered
an algorithm. The instructions found in a cook book recipe are much more similar to the
instructions that must be included in an algorithm.

Many aspects of algorithms are studied in Computer Science:

• the design of languages for expressing algorithms,

• the mathematical analysis of the correctness of algorithms, ...

Our concern will simply be to learn how to write good algorithms (i.e., how to write good instruc-
tions) and put them in a form (a program) that the computer canexecute. To appreciate why it
might take as long as a semester to accomplish this, consider:

• Humans, in general are very good at writing bad instructions.

– Have you ever tried to assemble something complex by following the manufacturer’s
directions?

– Have you ever tried to register for courses?

• Humans are, in general, very good at following bad instructions.

– Think about a recipe that in the first step calls for preheating the oven and the second
step calls for refrigerating a mixture of ingredients overnight. How many people would
be silly enough to leave the oven on overnight?

• Computers are (always) very good at following instructions exactly.

– A computer would definitely leave the oven on overnight.

Learning to write good algorithms is a skill. While we can provide advice on how to go about it,
there are no set rules that will always enable you to produce agood algorithm for a given task.
Experience is the best way to develop the needed skills.

At the same time that you are learning this skill, we will alsobe teaching you a language you will
have to use to communicate your algorithms to a computer, Java.

• A good analogy of the process you are undertaking would be theprocess of learning a game
like chess.

– You have to first learn the legal moves for each chess piece. This is like learning the
rules of the Java language. It isn’t that hard but it isn’t enough to make you a chess
player (or a programmer).

– Then, you have to learn strategy. You can read about other players approaches, but
nothing beats practice.

4


