
Computer Science 120
Introduction to Programming
Siena College
Spring 2011

Topic Notes: Input/Output

We have seen some examples of input/output (I/O) from the keyboard, to the terminal window, and
using files, mainly in the Hangman example. We will review andexpand upon those ideas here.

The Javamain method

• A main method may be used to test the operation of a class or to run a program.

• Its use for testing is usually informal, since it lacks the features of a more complete testing
tool such as JUnit.

• When used for testing and testing is complete,main can be deleted, or it may be commented
out and kept for future needs.

• In the Java language, when you execute a class with the Java interpreter, the runtime system
starts by calling the class’smainmethod. Themainmethod then calls all the other methods
required to run your application.

Input/Output

• A monitor is normally considered the standard output device.

• A keyboard is considered the standard input device.

• System.out sends output to the standard output device (i.e., the monitor).

• System.in references the standard input device. UnfortunatelySystem.in is not as
simple and straightforward asSystem.out. System.in reads input only as byte values,
which is usually not very useful since we usually need data inother formats. We can work
around this using a combination of theSystem.in object and theScanner class. For
example:

int number;
Scanner keyboard = new Scanner(System.in);
System.out.print("Enter an integer value: ");
number = keyboard.nextInt();



CS 120 Introduction to Programming Spring 2011

• TheScanner class has methods for reading strings, bytes, integers, long integers, short
integers, floats and doubles.

– nextFloat returns input as afloat

– nextDouble returns input as adouble

– nextInt returns input as anint

– nextLine returns entire line of input as aString

• In our Hangman example, we saw that we needed to add the lines

import java.io.FileNotFoundException;
import java.util.Scanner;

to be able to make use of the class, and we had to handle theFileNotFoundException.
In Hangman, we used atry..catch block, but we could also add the commandthrows
FileNotFoundException to our method header to essentially tell Java we’re not wor-
ried about that and to crash our program if theScanner has trouble finding the file we
requested.

A painfully simple example:

See Example: Payroll

Sometimes you want to read just a single character from the keyboard (e.g., a y/n response). How
do you do this?

String input;
char answer;

Scanner keyboard = new Scanner(System.in);
System.out.print("Are you having fun? (y=yes n=no) ");
input = keyboard.nextLine();
answer = input.charAt(0);

Reading from a file
Reading from a file rather than the keyboard does not add much complexity.

Instead of passingSystem.in to theScanner constructor, you can pass aFile object:

File f = new File("hamlet.txt");
Scanner input = new Scanner(f);

2



CS 120 Introduction to Programming Spring 2011

which we can shorten to a single line:

Scanner input = new Scanner (new File("hamlet.txt"));

A simple program to count the words in a file:

See Example: CountWords

Tokenizing
We often will want to process input token by token (one word ornumber at a time). This is called
tokenizing.

For example, let’s look at a program that processes a data filewith employees’ work information
on different lines of input. Each line consists of an employee id, name and then the number of
hours worked each day:

101 Erica 7.5 8.5 10.25 8 8.5
783 Erin 10.5 11.5 12 11 10.75
114 Simone 8 8 8
238 Ryan 6.5 8 9.25 8

A main method to do this might look like this:

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner (new File("hours.dat"));
while (input.hasNext()) {

int id = input.nextInt();
String name = input.next();
double sum = 0.0;
while (input.hasNextDouble()) {
sum += input.nextDouble();

}
System.out.println("Total hours worked by " + name +

" (id#" + id + ") = " + sum);
}

}

Unfortunately, this program would result in an error...

We need to get the program to stop reading data for the currentemployee when it gets to the end
of an input line. Reading the file line by line guarantees that you dont accidentally combine data
for two employees.

3



CS 120 Introduction to Programming Spring 2011

• To read a whole line, we can useinput.nextLine(), but it returns aString.

• We can write a method, we’ll call itprocessLine that takes aString as a parameter,
that can pull apart theString.

• Fortunately,Scanners are very flexible, and you can even attach them to aString:

Scanner input = new Scanner("18.4 17.9 8.3 2.9");

A working program that does this:

See Example: HoursWorked

4


